Speckle Tracking – Imagerie de Déformation

Erwan DONAL
Cardiologie – CHU Rennes
erwan.donal@chu-rennes.fr
Déclaration de Relations Professionnelles
Disclosure Statement of Financial Interest

J'ai actuellement, ou j'ai eu au cours des deux dernières années, une affiliation ou des intérêts financiers ou intérêts de tout ordre avec une société commerciale ou je reçois une rémunération ou des redevances ou des octrois de recherche d'une société commerciale :

I currently have, or have had over the last two years, an affiliation or financial interests or interests of any order with a company or I receive compensation or fees or research grants with a commercial company :

Affiliation/Financial Relationship
- Grant/Research Support
- Consulting Fees/Honoraria
- Major Stock Shareholder/Equity
- Royalty Income
- Ownership/Founder
- Intellectual Property Rights
- Other Financial Benefit

Company
- Medtronic
- Novartis
- Bristol Myer Squibb
- Daiichi Sankyo
- Astra Zeneca
- General Electric
- Philips
Imagerie de Déformation → SPECKLE TRACKING

- Bonne définition des contours
- Cadence images ±80/s
- Bonne image, bon tracé ECG
C’est quoi ce « SPECKLE TRACKING »?
LAGRANGIAN STRAIN

\[S = \frac{l - l_0}{l_0} = \frac{\Delta l}{l_0} \]
Normal Values:
• LONG -20%
• Circ -20%
Entrez la durée FVA dans Phases cardiaques.
Déform. l. g. = -25 %
Entrez la durée FVA dans Phases cardiaques.
Déform. c. g. = -26 %
Entrez la durée FVA dans Phases cardiaques.
Déform. I. g. = -25 %
Garder à l’esprit la charge dépendance
Current and Evolving Echocardiographic Techniques for the Quantitative Evaluation of Cardiac Mechanics: ASE/EAE Consensus Statement on Methodology and Indications

Endorsed by the Japanese Society of Echocardiography

Pioneer in cardiac morphology

New quantitative techniques

M-Mode

2-D: descriptive echo

Doppler
Comparison of ≠ GLS

Comparison of to ‘out of the box’ tools for assessing strain on DiCom data

Journal of the American Society of Echocardiography 2012
GLS consistently showed good reproducibility (~6%) while reproducibility was moderate for circumferential strain (~12%) and poor in the radial direction (~20%).

30 frames/sec (on DiCom data) can be reliably performed for longitudinal strain.
Cardiomyopathies

Ischemic heart disease

Aortic stenosis / increase in afterload

Mitral Regurg/ Aortic Regurg

Chemotherapy

Right heart disease cut-off -19%
Atria: reservoir function, functional remodeling
Entrez la durée FVA dans Phases cardiaques.
Déform. I.g. = -17 %

Déformation systolique pic
Temps à pic

FC = 96 bpm
A2C Déform. I. = -18 %
A4C Déform. I. = -20 %
A3C Déform. I. = -17 %
Déform. I.g. (Moy) = -18 %
Ischemic heart
Model of progressive abnormalities in LV diastolic and systolic function underlying heart failure across the LV EF spectrum.

Shah A M, Solomon S D Eur Heart J 2012;33:1716-1717
Independent prognostic value of GLS in HF with LVEF <40%

GLS < -7%

GLS > -7%

RR=7.02, p<0.00001

Mignot A, Donal E, et al. JaSE 2010
Importance of Longitudinal Function in Chronic Heart Failure Patients:
Correlation with Functional Capacity and Prognosis
140 CHF patients
GLS and adverse outcome (death, cardiac assistance or transplant, and recurrent HF)

125 consecutive patients, LV EF 31±10%; 15 deaths; 29 recurrent HF; 4 heart transplants over 266±177 days
Dysynchrony
Prediction of All-Cause Mortality From Global Longitudinal Speckle Strain

Comparison With Ejection Fraction and Wall Motion Scoring

Conclusions—GLS is a superior predictor of outcome to either EF or WMSI and may become the optimal method for assessment of global left ventricular systolic function. (Circ Cardiovasc Imaging. 2009;2:356-364.)

GLS = global longitudinal strain, EF = ejection fraction, WMSI = wall motion score index

DCM

546 patients; 5.2 year follow-up
Hypertrophic cardiomyopathy

Prognostic cut-off -12.9%

%LGE = 11.9 %
%LGE = 0 %

GLS = -9.4 %
GLS = -16.4 %

When the HCM patients were stratified based on the median level of GLS (-12.9%), All events were observed in the worse GLS group (P = 0.018)
Longitudinal LV Function for Prediction of Survival in Systemic Light-Chain Amyloidosis
Incremental Value Compared With Clinical and Biochemical Markers

GLS : valeur indépendante et additive au score de Karnovsky

Table A

<table>
<thead>
<tr>
<th>Group</th>
<th>Number at risk</th>
<th>Time (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< -10.7</td>
<td>95 94 89 86 80 76 67 40 18</td>
<td>0 250 500 750 1000 1250 1500 1750 2000 2250</td>
</tr>
<tr>
<td>> -10.7</td>
<td>110 56 45 36 31 24 19 13 6</td>
<td>0 250 500 750 1000 1250 1500 1750 2000 2250</td>
</tr>
</tbody>
</table>

Table B

<table>
<thead>
<tr>
<th>Group</th>
<th>Number at risk</th>
<th>Time (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< -11.8</td>
<td>113 109 104 101 95 88 78 48 22</td>
<td>0 250 500 750 1000 1250 1500 1750 2000 2250</td>
</tr>
<tr>
<td>> -11.8</td>
<td>92 41 30 21 16 12 8 5 2</td>
<td>0 250 500 750 1000 1250 1500 1750 2000 2250</td>
</tr>
</tbody>
</table>

Table C

<table>
<thead>
<tr>
<th>NT-proBNP</th>
<th>Survival probability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3085 pg/ml</td>
<td>p<0.0001, X²=84.2</td>
</tr>
<tr>
<td>> 3085 pg/ml</td>
<td>p<0.0001, X²=84.2</td>
</tr>
</tbody>
</table>

Table D

<table>
<thead>
<tr>
<th>Cardiac Troponin-T</th>
<th>Survival probability (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.01 µg/l</td>
<td>p<0.0001, X²=72.3</td>
</tr>
<tr>
<td>≥ 0.01 µg/l</td>
<td>p<0.0001, X²=72.3</td>
</tr>
</tbody>
</table>

Sebastian J. Buss et al.
Journal of the American College of Cardiology 2012; 60 : 1067 - 1076
Interesting value in Asymptomatic AoS

Adjustment for gender, systemic arterial compliance, E-wave, E/A ratio and response to exercise (abnormal vs. normal)

- Peak aortic velocity $\geq 4.4 \text{ m.s}^{-1}$
- $Zva \geq 4.9 \text{ mmHg.ml}^{-1}.\text{m}^{-2}$
- GLS $\leq 15.9 \%$
- Ind. LA area $\geq 12.2 \text{ cm}^2/\text{m}^2$

Hazard ratio:
- HR = 1.7, $p=0.027$
- HR = 1.9, $p=0.013$
- HR = 2.2, $p=0.003$
- HR = 2.8, $p=0.001$
Global longitudinal strain is a strong independent predictor of all-cause mortality in patients with aortic stenosis.

N=146
Kaplan–Meier plot illustrating survival free from major adverse cardiac events in patients with aortic stenosis.

low (GLS \geq15%)
ROC of preoperative LV GLS for LV dysfunction at long-term follow-up (>12 months).

Witkowski T G et al. Eur Heart J Cardiovasc Imaging 2012;ehjci.jes155
Postoperative outcome for mortality according to GLS and LVEF.

Ternacle J et al. Eur Heart J Cardiovasc Imaging 2012;ehjci.jes156

425 patients

- CABG 155
- aortic valve surgery 174
- mitral surgery 96
2D Longitudinal Strain: Powerful modality for the assessment of subclinical cardiac dysfunction

Spethmann S et al. Eur Heart J Cardiovasc Imaging 2012;ehjci.jes047
Conclusions—In patients with breast cancer treated with anthracyclines, taxanes, and trastuzumab, systolic longitudinal myocardial strain and ultrasensitive troponin I measured at the completion of anthracyclines therapy are useful in the prediction of subsequent cardiotoxicity and may help guide treatment to avoid cardiac side-effects. (Circ Cardiovasc Imaging. 2012;5:596–603.)
Echo / speckle tracking/ deformation imaging

LONGITUDINAL STRAIN in addition to the current practice

Increase number of demonstrations of its real clinical value

Best for follow-up than EF, still few technical issues and necessity in recognizing a necessary learning curve
Inscrivez vous !