Continuous and noninvasive arterial blood pressure monitoring

Pr. Jean-Luc Fellahi
fellahi-jl@chu-caen.fr

Pôle Réanimations-Anesthésie-SAMU, CHU de Caen
UFR de Médecine, EA4650, Université de Caen Basse-Normandie
Déclaration de Relations Professionnelles
Disclosure Statement of Financial Interest

J'ai actuellement, ou j'ai eu au cours des deux dernières années, une affiliation ou des intérêts financiers ou intérêts de tout ordre avec une société commerciale ou je reçois une rémunération ou des redevances ou des octrois de recherche d'une société commerciale :

I currently have, or have had over the last two years, an affiliation or financial interests or interests of any order with a company or I receive compensation or fees or research grants with a commercial company:

Affiliation/Financial Relationship

- Grant/Research Support
- Consulting Fees/Honoraria

Company

- Edwards Lifesciences S.A.S.
- Pulsion Medical Systems
- Masimo
1. Blood pressure monitoring

Invasive
- Reference method
- Direct and continuous measurement
- Positive benefit/risk analysis
- Independent of local changes in vasomotor tone and arterial rigidity
- Repeated blood sampling

Non invasive
- Continuous or discontinuous indirect measurement
- Occlusive methods: sphygmomanometry, oscillometry
- Non occlusive methods: tonometry, photoplethysmography
- Dependent of local changes in vasomotor tone

AAMI recommendations: bias < 5 mmHg; precision < 8 mmHg; LOA ± 15 mmHg
2. Continuous blood pressure monitoring

Real-time measurement of blood pressure

- Hemodynamic instability
- Effects of vasoactive drugs
Qualitative analysis of blood pressure waveform

Useful information at the bedside
Specific abnormalities
SBP and PP variation during mechanical ventilation

PPV = \(\frac{(PP_{\text{max}} - PP_{\text{min}})}{\left[(PP_{\text{max}} + PP_{\text{min}})/2\right]} \)

PPV threshold value = 9 to 13% (Cannesson, Anesthesiology 2011)
Assessment of preload dependence

Dynamic indices

Preload dependence

Preload independence

SV

Preload

SVV Flotrac/Vigileo
Edwards

PPV Intellivue
Philips

PPV S/5
GE

SVV PPV PICCO plus
Pulsion
Stable relationship between the systolic area of arterial pressure waveform (As) and stroke volume

\[SV = \frac{As}{Z} \]

\(Z \) = vascular arterial impedance
Mini-invasive assessment of CO with pulse contour analysis
3. Continuous and noninvasive blood pressure monitoring

NEXFIN
Edwards Lifesciences, Irvine, USA

CNAP
CNSystems, Graz, Austria

Digital photoplethysmography

CO assessment with pulse contour analysis
Continuous and noninvasive BP monitoring

NEXFIN
- **Pubmed:** 40 references
- Anesthesiology, critical care and emergency = 21
- Phase III studies = ± 1
- BP comparators: radial/femoral invasive BP, oscillometric BP, invasive PPV, SVV
- CO comparators: TD, TP-TD, TTE, Esophageal Doppler, cardiac NMR

CNAP
- **Pubmed:** 24 references
- Anesthesiology, critical care and emergency = 15
- Phase III studies = 0
- BP comparators: radial/femoral invasive BP, oscillometric BP, invasive PPV, SVV
NEXFIN: blood pressure monitoring

\[\text{SBP} \]
\[r = 0.75 \]
\[p < 0.001 \]

\[\text{DBP} \]
\[r = 0.78 \]
\[p < 0.001 \]

\[\text{MBP} \]
\[r = 0.88 \]
\[p < 0.001 \]

\[\text{N} = 220 \text{ couples of measures in 44 cardiac surgical patients:} \]

\[\text{SBP} = 108 \pm 20 \text{ (55-166) mmHg} \]
\[\text{DBP} = 67 \pm 10 \text{ (44-94) mmHg} \]
\[\text{MBP} = 81 \pm 12 \text{ (48-117) mmHg} \]

\[\text{Fischer, BJA 2012} \]
Average of SBP_AI and SBP_NF

Mean: 5.7
SD: 2.2

Average of DBP_AI and DBP_NF

Mean: -8.9
SD: 2.7

Average of MBP_AI and MBP_NF

Mean: -4.6
SD: 1.7

AAMI recommendations on MBP: bias < 5 mmHg; precision < 8 mmHg; LOA ± 12.7 mmHg

Bias = -4.6 mmHg
Precision = 6.5 mmHg
LOA = ± 12.7 mmHg

Fischer, BJA 2012
CNAP: blood pressure monitoring

AAMI recommendations on MBP: bias < 5 mmHg; precision < 8 mmHg; LOA ± 15 mmHg

<table>
<thead>
<tr>
<th>Author</th>
<th>Bias (mmHg)</th>
<th>Precision (mmHg)</th>
<th>LOA (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeleazcov (BJA 2010)</td>
<td>-1.6</td>
<td>-</td>
<td>± 12.0</td>
</tr>
<tr>
<td>Ilies (BJA 2012)</td>
<td>-4.3</td>
<td>-</td>
<td>± 19.5</td>
</tr>
<tr>
<td>Hahn (BJA 2012)</td>
<td>-3.1</td>
<td>9.4</td>
<td>± 18.5</td>
</tr>
<tr>
<td>Gayat (AAS 2013)</td>
<td>-8.0</td>
<td>-</td>
<td>± 26.0</td>
</tr>
<tr>
<td>Schramm (Anesth Analg 2013)</td>
<td>3.9</td>
<td>-</td>
<td>± 22.6</td>
</tr>
</tbody>
</table>
NEXFIN: prediction of fluid responsiveness
CNAP: prediction of fluid responsiveness

Biais, Anesth Analg 2011
N = 35 vascular surgery patients

Monnet, BJA 2012
N = 47 critically-ill patients

\[
\text{ROC}_{\text{AUC}} \Delta \text{PP}_{\text{ART}} = 0.96 \pm 0.03
\]

\[
\text{ROC}_{\text{AUC}} \Delta \text{PP}_{\text{CNAP}} = 0.94 \pm 0.04
\]

\[
\text{ROC}_{\text{AUC}} \text{PPVi} = 0.89 \ (0.77-1.01)
\]

\[
\text{ROC}_{\text{AUC}} \text{PPVni} = 0.89 \ (0.78-1.01)
\]
Non-invasive continuous arterial pressure and cardiac index monitoring with Nexfin after cardiac surgery

M. O. Fischer1*, R. Avram1, I. Cărjaliu1, M. Massetti2,3, J. L. Gérard1,3, J. L. Hanouz1,3 and J. L. Fellahi1,3

1 Department of Anesthesiology and Critical Care and 2 Department of Cardiothoracic Surgery, CHU de Caen, Caen F-14000, France
3 University of Caen, Faculty of Medicine, Caen F-14000, France
* Corresponding author. E-mail: fischer-mo@chu-caen.fr

\[
\text{CI}_{\text{TD-TP}} \text{ versus } \text{CI}_{\text{Nexfin}}
\]

\[
2.5 \pm 0.6 \text{ (1.5-4.5)} \text{ vs. } 2.5 \pm 0.7 \text{ (1.1-4.7)} ; P=0.898
\]

\[
\text{r} = 0.57 ; P < 0.001
\]

Bias = 0.01 L/min/m²

LOA + 1.23 L/min/m²

Error percentage = 50%

99% of changes in CI are within 0.4 L/min/m² (20%) of LOA
Conclusions

- **NEXFIN** and **CNAP** devices are reliable tools to continuously and noninvasively assess blood pressure (*AAMI recommendations*)
- **NEXFIN** and **CNAP** could be clinically useful to predict fluid responsiveness
- **NEXFIN** could be useful as a CO trend monitor
- Phase III validation studies are mandatory in different subgroups of moderate to high-risk patients before recommending a wider use at the bedside