Cardiopulmonary exercise test among children with congenital heart diseases: a multicenter study

Pascal AMEDRO, MD, PhD, Arthur Gavotto, MD, Sophie GUILLAUMONT, MD, Stefan MATECKI, MD, PhD

Pediatric and Congenital Cardiology – Montpellier University Hospital
UMR CNRS 9214 - INSERM U1046 – Physiology and Experimental Medicine of Heart and Vessels - PHYMEDEXP – Montpellier University
Disclosure Statement of Financial Interest

I currently have, or have had over the last two years, an affiliation or financial interests or interests of any order with a company or I receive compensation or fees or research grants with a commercial company:

Grant/Research Support: **Bayer Healthcare, Actelion Pharmaceuticals, Novartis**

Consulting Fees/Honoraria: **Astra Zeneca, Pierre Fabre**

Major Stock Shareholder/Equity: None

Royalty Income: None

Ownership/Founder: None

Intellectual Property Rights: None

Other Financial Benefit: None
What we already know in adults with chronic heart failure and ACHD

• Adaptation to exercise:
 – Peak VO2 and VE/VCO2 slope related to the severity of the disease
 • NYHA in CHF
 • complex CHD in ACHD
 – Peak VO2 and VE/VCO2 slope correlated to the physical dimension of the QoL

• CPET is recommended in ACHD follow-up

 • Hager et al. *Heart* 2005
 • Kamphuis et al. *Heart* 2002
 • Culbert *Circulation* 2003

 • Baumgartner et al. *EHJ* 2010
Correlation between cardio-pulmonary exercise test variables and health-related quality of life among children with congenital heart diseases

P. Amedro a,d,e,*, M.C. Picot b,f, S. Moniotte c, R. Dorka a, H. Bertet c,f, S. Guillaumont a,g, C. Barrea c, M. Vincenti a,d, G. De La Villeon a,g, C. Bredy a, C. Soulages a, M. Voisin a, S. Matecki d,h, P. Auquier e

a Pediatric and Congenital Cardiology Department, University Hospital, Montpellier, France
b Epidemiology and Clinical Research Department, University Hospital, Montpellier, France
c Pediatric and Congenital Cardiology Department, St-Luc University Hospital, UCL, Brussels, Belgium
d Physiology and Experimental Biology of Heart and Muscles Laboratory - PHYMEDEXP. UMR CNRS 9214 - INSERM U1046, University of Montpellier, Montpellier, France
e Self-perceived Health Assessment Research Unit, EA3279, Public Health Department, Mediterranean Medical School, Marseille, France
f Clinical Investigation Center, INSERM–CIC 1411, Montpellier, France
g Pediatric Cardiology and Rehabilitation Unit, St-Pierre Institute, Palavas-Les-Flots, France
h Pediatric Functional Exploration Laboratory, Physiology Department, University Hospital, Montpellier, France
Aims

• To measure peak VO2 in a large cohort of CHD children
• To compare peak VO2 to a control population
• To correlate peak VO2 to predicted peak VO2 (from Wasserman and Cooper)
• To identify variables that most impacted peak VO2 in CHD children
Method

- Retrospective observational study.
- Children aged 5 to 18 who performed a complete CPET between 2010 and 2015 in 2 French pediatric CHD tertiary care centers.
- CHD group was defined upon L. Houyel's classification.
- Children with no chronic disease, no treatment and normal physical examination were included in the control group.
- Data were adjusted on age and gender.
- The impact of CPET and clinical variables on peak VO2 was studied with multivariate analysis.
Flow chart

CHD
N:2007 CPET
Controls

Center 1
N=101
Center 2
N=469

Non-eligible
N=74
- Heart transplant
- Cardiomyopathy
- Idiopathic pulmonary hypertension
- Arrhythmia
- Kawasaki disease
- Myopericarditis

Included
N=496

Center 1
N=803
Center 2
N=634

Non-eligible
N=1135
- Asthma
- Cystic fibrosis
- Anthracycline chemotherapy
- Obesity
- Drug therapy

Included
N=302
Results: population

<table>
<thead>
<tr>
<th>CHD Group</th>
<th>ACC-CHD classification</th>
<th>N</th>
<th>Age (years)</th>
<th>Height (cm)</th>
<th>Weight (kg)</th>
<th>BMI (kg/m^2)</th>
<th>Sex ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td></td>
<td>302</td>
<td>11.1±2.6</td>
<td>150±16</td>
<td>42.2±13.3</td>
<td>18.3 ± 2.9</td>
<td>1.32</td>
</tr>
<tr>
<td>CHD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Heterotaxy</td>
<td>3</td>
<td>9 ±3.6</td>
<td>142.3±19.7</td>
<td>31.7±12.4</td>
<td>15.1 ± 1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>Anomalies of the venous return</td>
<td>13</td>
<td>11.7±4</td>
<td>148.8±18.4</td>
<td>42.1±12.8</td>
<td>18.5±2.2</td>
<td>1.17</td>
</tr>
<tr>
<td>3</td>
<td>Anomalies of the atria and interatrial communications</td>
<td>29</td>
<td>12.3±3</td>
<td>153.9±16.6</td>
<td>44.9±11.1</td>
<td>18.6±2.5</td>
<td>0.52</td>
</tr>
<tr>
<td>4</td>
<td>Anomalies of the atrioventricular junctions and valves</td>
<td>27</td>
<td>11.6±3.3</td>
<td>150.2±19.2</td>
<td>42.6±16.9</td>
<td>18.1±3.5</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>Complex anomalies of atrioventricular connections</td>
<td>5</td>
<td>13±2.4</td>
<td>154.8±16.8</td>
<td>45.8±18.2</td>
<td>18.5±4.6</td>
<td>1.5</td>
</tr>
<tr>
<td>6</td>
<td>Functionally univentricular hearts</td>
<td>25</td>
<td>12.6±3.5</td>
<td>148.1±18.6</td>
<td>41.9±13.1</td>
<td>18.6±2.7</td>
<td>2.13</td>
</tr>
<tr>
<td>7</td>
<td>Ventricular septal defects (VSD)</td>
<td>46</td>
<td>12.7±3</td>
<td>154.4±16.5</td>
<td>46.4±16</td>
<td>18.9±3.9</td>
<td>1.42</td>
</tr>
<tr>
<td>8</td>
<td>Anomalies of the ventricular outflow tracts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Transposition of the great arteries</td>
<td>72</td>
<td>11.8±3.3</td>
<td>151.6±19.4</td>
<td>46.6±18.7</td>
<td>19.5±4</td>
<td>4.54</td>
</tr>
<tr>
<td>8.2</td>
<td>Tetralogy of Fallot, truncus arteriosus, pulmonary atresia, double outlet right ventricle</td>
<td>93</td>
<td>12.2±3.5</td>
<td>149.7±17.2</td>
<td>41.3±15.1</td>
<td>17.8±3.3</td>
<td>1.21</td>
</tr>
<tr>
<td>8.5</td>
<td>Aortic valve stenosis, Shone syndrome</td>
<td>52</td>
<td>12.5±3.2</td>
<td>150.8±15.6</td>
<td>46±15.8</td>
<td>19.6±3.9</td>
<td>1</td>
</tr>
<tr>
<td>8.6</td>
<td>Pulmonary valve stenosis</td>
<td>49</td>
<td>11.6±3.2</td>
<td>148.4±15.5</td>
<td>41±12</td>
<td>18.2±2.6</td>
<td>0.88</td>
</tr>
<tr>
<td>9</td>
<td>Anomalies of the extrapericardial arterial trunks</td>
<td>76</td>
<td>12.5±3.3</td>
<td>152±18.2</td>
<td>46±17</td>
<td>19.2±4.2</td>
<td>2.17</td>
</tr>
<tr>
<td>10</td>
<td>Congenital anomalies of the coronary arteries</td>
<td>6</td>
<td>11.5±3.2</td>
<td>144±18.5</td>
<td>44.6±22.1</td>
<td>20.2±4.8</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Peak VO2: global results

<table>
<thead>
<tr>
<th>CHD</th>
<th>Controls</th>
<th>CHD versus controls *</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Mean peak VO2 (ml/kg/min)</td>
<td>Mean peak VO2 (ml/kg/min)</td>
</tr>
<tr>
<td>496</td>
<td>38.1 ± 8.1</td>
<td>93%</td>
</tr>
</tbody>
</table>

* Values adjusted on age and gender
Peak VO2 and CHD

<table>
<thead>
<tr>
<th>Peak VO2</th>
<th>Group</th>
<th>CHD</th>
<th>% of the controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>8.6</td>
<td>Pulmonary valve stenosis</td>
<td>94%</td>
</tr>
<tr>
<td>Very good</td>
<td>3</td>
<td>ASD</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Anomalies of the extra-pericardial arterial trunks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.1</td>
<td>TGA</td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>2</td>
<td>Abnormal venous return</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Anomalies of the atrioventricular junction and valves</td>
<td>80-90%</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>VSD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.2</td>
<td>Fallot, truncus arteriosus, pulmonary atresia, DORV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>Aortic stenosis, Shone</td>
<td></td>
</tr>
<tr>
<td>Moderately impaired</td>
<td>6</td>
<td>Functionally univentricular hearts</td>
<td>72%</td>
</tr>
</tbody>
</table>
Peak VO2: comparison between CHD and predicted values from Wasserman and Cooper

• The % of predicted peak VO2 > 85% in our cohort of CHD children

• Except for:
 – group 5 (complex anomalies of atrioventricular connections): 79.7%
 – and group 6 (functionally univentricular hearts): 76.4%
Report of the % of predicted peak VO2 (Wasserman and Cooper). The thick line indicates the mean values. The fine lines indicate the 1st and 3rd interquartile.
Determinants of peak VO2

Univariate analysis

- **Restrictive syndrome** $p < 0.001$
- **Right ventricle hypertension** $p < 0.001$
- **Valvular regurgitation:**
 - mitral valve $p < 0.001$,
 - aortic valve $p = 0.001$,
 - tricuspid valve $p = 0.006$
 - pulmonary valve $p = 0.003$
 - correlation between the degree of pulmonary and tricuspid regurgitations and peak VO2
- **Altered systemic ventricle ejection fraction** $p = 0.004$
Determinants of peak VO2

Multivariate analysis

- female gender
- existence of a genetic anomaly
- number of cardiac catheterization
- tricuspid regurgitation
- number of heart surgery
- aortic regurgitation
- pulmonary regurgitation
- age: VO2 alters with age in CHD but not in the controls
Limits

- Retrospective study
- Control population: selected at the hospital
- Selection in tertiary care centers: over-representation of complex CHD
Perspectives

• Other CPET variables :
 – Anaerobic threshold
 – VE/VCO2 slope
 – OUES
 – Oxygen pulse

• Evolution in time

• Rehabilitation in CHD children : need for a controlled randomized study
Conclusion

• Peak VO2 among children with CHD is not as altered as in adults but remained significantly lower than normal children.

• Normal CPET can participate to promote physical activity and sports in CHD children

• Peak VO2 and QoL can be used as endpoint in CHD clinical trials

• Should we recommend performing CPET in routine follow-up of CHD children?
Thanks to Montpellier CHD team

Pediatric Functional Exploration Unit, Montpellier University Hospital, France

Pr Stefan Matecki
Dr Pascal Amedro
Dr Arthur Gavotto
Anne Requirand
Cristel Gerl

Pediatric and Congenital Cardiology, M3C, Montpellier University Hospital, France

Dr Pascal Amedro
Dr Arthur Gavotto
Dr Sophie Guillaumont
Dr Grégoire De La Villéon
Dr Marie Vincenti
Dr Charlène Bredy
Dr Arnaud Bertrand
Oscar Werner

Pediatric Cardiology Institut-St-Pierre, Palavas-Les-Flots, France

Dr Sophie Guillaumont
Dr Grégoire De La Villeon
Dr Bettina Borm
Dr Marie Vincenti
Annie Auer
Amandine Marquina
Oscar Werner

UMR CNRS 9214 - INSERM U1046

Alain Lacampagne
Pr Stefan Matecki
Dr Pascal Amedro
Dr Marie Vincenti

Clinical Research and Epidemiology Unit, University Hospital, Montpellier, France

Dr Marie-Christine Picot
Helena Bertet

Collaboration with:
Pediatric and Congenital Cardiology, - La Timone University Hospital, Marseille, France - Toulouse University Hospital

Hôpitaux de Toulouse